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Abstract. Early identification of emerging skills is critical to align
workforce development with labor market trends, however current
skills forecasting and detection methods fall short since they rely
heavily on historical data or depend on predefined taxonomies. In
this paper, first, we propose to frame skill emergence as a combina-
torial optimization problem over temporal networks. This problem,
known as the Minimum Timeline Cover (MinTCover) problem, has
the goal of identifying minimal activity intervals for entities, offering
interpretable summaries of when they become relevant. Second, we
design a system that combines real-time skills extraction from job
posting and temporal knowledge graph construction using large lan-
guage models, and we introduce a loss-enhanced version of a deep
learning-based MinTCover solver to model skill emergence. Experi-
ments show that on the one hand, our loss-based MinTCover solver
improves state-of-the-art approaches achieving an average 1.17% re-
duction in total timeline span, and on the other hand, the overall
pipeline achieves high performance in identifying emerging skills,
outperforming other network-based clustering approaches, with bet-
ter temporal alignment and fewer premature detections. Our method
is the first to model early skills detection as a combinatorial problem
and to operate in a fully unsupervised setting collecting data in real
time, demonstrating its potential for dynamic labor market monitor-
ing and proactive identification of emerging skills.

1 Introduction

In recent years, the rapid transformation of the labor market, driven
by digitalization and automation, has made it necessary to funda-
mentally rethink the skills required of workers. According to the Fu-
ture of Jobs Report 2025 by the World Economic Forum [27], by the
end of 2025 nearly half of the global workforce will need reskilling,
while many traditional roles will either disappear or be radically re-
shaped. In this context, it becomes crucial anticipating shifts in skill
demands both for companies and for educational institutions. Timely
identification of emerging competencies enables businesses to stay
aligned with industry trends and helps bridge the gap between ed-
ucation and employment. This need is recognized, in fact, also by
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large-scale initiatives such as the European’s project on skills antic-
ipation and matching [3, 4], which emphasize evidence-based labor
forecasting.

Existing methods for skill demand analysis fall into two main cat-
egories: forecasting established trends and detecting emerging skills.
Traditional forecasting approaches typically rely on historical data,
often using statistical models or deep learning (DL) techniques. For
example, recurrent neural networks have been used to model tem-
poral dynamics in job ads [5], while labor data and expert input
have supported long-term planning strategies [12]. However, these
methods are constrained by their dependence on extensive historical
datasets and often fail to adapt to fast-paced technological changes.
To cope with these drawbacks, network-based methods such as tem-
poral skills clustering [22] have been proposed. This approach works
directly on job postings and requires less historical data, identify-
ing emerging trends by grouping skill mentions into temporal co-
occurrence clusters and tracking their evolution over time. If, on the
one hand, this method is effective in adapting to fast changes, on the
other it relies on a set of predefined skills, not being suitable for auto-
matic early skills detection. Approaches for detecting emerging skills
automatically aim to capture nascent trends but often suffer from
fragmented and inconsistent data sources. Some strategies rely on
predicting emerging skills defined as previously low-demand skills
experiencing a surge in hiring demand [28], others integrate natu-
ral language processing and skill taxonomies to link curricula with
market trends by combining data from job advertisements, course
descriptions, and resumes to enable a fine-grained analysis of skill
gaps [17], or use machine learning (ML) for career guidance based
on skill profiles [23]. Despite their promise, these methods struggle
with scalability and robustness across domains.

To address these limitations, we propose to model the early skills
detection problem as an instance of the Minimum Timeline Cover
(MinTCover) problem [20, 10, 7, 6, 8, 15, 16], a recently intro-
duced combinatorial optimization task on temporal graphs. MinT-
Cover aims to extract compact and interpretable timelines by iden-
tifying the minimal activity intervals necessary to cover all inter-
actions in a temporal network. Although the problem is NP-hard,
efficient sub-optimal solutions have been proposed, including a DL-
based model that offers promising results despite relying on heuristic
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post-processing that does not ensure true minimality [16]. To frame
early skills detection as a MinTCover task, we leverage knowledge
graphs (KGs), which offer a flexible framework for modeling dy-
namic relationships and have already shown potential in domains
like resume parsing and skill matching [11, 24], as well as dynamic
network analysis [18, 2]. Thus, we put forward a system that ex-
tracts skills and temporal relationships from job posting with large
language models (LLMs), resulting in a dynamic data-driven graph
structure where each node represents a skill and edges represent co-
occurrences in job postings over time, providing a principled founda-
tion for detecting emerging skills with high temporal resolution and
without relying on predefined taxonomies. Contrary to clustering-
based or taxonomy-dependent methods, our method requires neither
predefined skill sets nor historical frequency thresholds, enabling de-
tection of previously unseen competencies in real time.

In this setting, our contributions are twofold. First, we applyMinT-
Cover to early skills detection - an area where existing methods strug-
gle with both scalability and effectiveness - by mapping emerging
skills to activity intervals in temporal KGs. This enables the identi-
fication of in-demand competencies ahead of traditional forecasting
models. Notably, our system successfully identifies novel and valid
emerging skills not yet included in formal taxonomies, as confirmed
by expert validation. Second, we propose an algorithmic improve-
ment over existing MinTCover solvers by incorporating a loss-based
refinement step, ensuring true minimality and improving both pre-
dictive accuracy and summarization efficiency with respect to state-
of-the-art approaches over a well established test dataset.

The remainder of the paper is structured as follows: Section 2 in-
troduces the MinTCover theoretical framework; Section 3 details the
KG construction approach and loss-based optimization; Section 4
presents our experiments and evaluation metrics; and Section 5 con-
cludes with final remarks and future directions.

2 Problem Formulation

2.1 Minimum Timeline Cover Problem

LetG = (V,E) be an unweighted undirected temporal graph, where
V is the set of vertices andE the set of temporal edges (u, v, t), with
u, v ∈ V vertices and t ∈ T the timestamp indicating the time that
an interaction between vertices u and v takes place. We denote as
as deg(u) =

∑T
t=1 degree((u, t)) the global degree of a vertex u,

i.e. the number of temporal edges incident in u in the overall time
domain and as density the ratio of the number of edges |E| with
respect to the maximum possible edges: d = 2|E|

|V |(|V |−1)|T | .
Given two numbers su, eu, with su ≤ eu we define Iu = [su, eu]

as the activity interval of vertex u and T = {Iu}u∈V as an activity
timeline of G. Given an interval Iu = [su, eu], δ(Iu) = eu − su is
the span of interval Iu.

Definition 1 (Timeline Cover). Given a temporal graph G = (V,E)
and an activity timeline T = {Iu}u∈V , we say that T covers G if
∀(u, v, t) ∈ E, t ∈ Iu or t ∈ Iv .

The goal is to find a timeline that has the most compact inter-
vals possible according to the sum-span of a timeline T , S(T ) =∑

u∈V δ(Iu).

Problem 1 (MinTCover). Given a temporal graph G = (V,E), find
a timeline T = {Iu}u∈V that covers G and minimizes the sum-span
S(T ).

This problem is NP-Hard [10] and, when considering more than
one time interval, not even approximable within any constant factor
(deciding whether there exists a solution of span 0 is indeed an NP-
complete problem) [20, 10, 7, 6]. Although no scalable exact solu-
tions are available in the literature, some approximate [20, 8], heuris-
tic [15] and DL-based [16] solutions have been proposed. Among
these, the most effective approach is proposed in [16], where the au-
thors suggests to train a DL model based on graph neural network
(GNN), transformers and pointer network (PN) to improve solution
quality with respect to other approximations and heuristics based so-
lutions, against a little increase in terms of execution time.

2.2 Skills Demand Early Detection

The MinTCover problem provides a natural framework for detecting
emerging skills in temporal KGs derived from job postings. To under-
stand this connection, the fundamental idea is to represent each skill
as a vertex of a graph where temporal edges denote co-occurrences
within job descriptions over time. The goal is to assign each skill an
activity interval Iu = [su, eu], such that for every edge (u, v, t), the
timestamp t lies within Iu or Iv . By minimizing the total length of
these intervals, MinTCover reveals when a skill becomes essential
and when it fades into irrelevance.

On the one hand, this approach distinguishes true skill emergence
from sporadic appearances: a skill becomes active only if its pres-
ence is required to cover interactions that no other skill can. Rare
mentions are ignored unless indispensable or until they become rel-
evant, allowing the framework to identify meaningful transitions in
labor demand. From the other, it captures both emergence and de-
cline: a skill is activated when it becomes necessary to cover new
co-occurrences and deactivated when others suffice to cover its for-
mer role. Thus, it implicitly models demand frequency - frequently
required skills will have longer intervals, while marginal ones may
never be activated or will quickly fade.

Figure 1. A static co-occurrence graph (left) representing fixed
relationships among entities and a temporal framework, emphasizing how
activity timelines capture dynamic interactions over time. Edges in the left
static KG correspond to co-occurrences at specific timestamps: consider, as
an example, the edges highlighted in blue in job descriptions (JD) 1, 3 and 6,

which correspond to the edge between vertices ML and DL with the
corresponding vector of labels. On the right, these edges are activated across
time, and the MinTCover algorithm selects minimal intervals during which
each skill is indispensable. Red timelines illustrate the MinTCover concept:

identifying minimal intervals summarizing key temporal patterns.

Figure 1 illustrates this process: on the left, a co-occurrence graph
depicts skills as vertices, with edges representing their co-appearance
in job postings over time: every time a new job posting is processed
new skills and co-appearances are added as new vertices and new
edges to the co-occurrence graph. Each edge is labeled with the ar-
ray of timestamps of their appearance in the job posting: thus, when
parsing a job posting if an edge is already present the array of times-
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tamps used as label is enriched with the new timestamp. On the
right, a temporal network model visualizes these temporal interac-
tions, showing at each timestamp the vertices and edges extracted
from the corresponding job posting. This highlights how timelines of
entity and time-interval pairs can provide rich insights into signifi-
cant events. For instance, the launch of ChatGPT in November 2022
rapidly transformed the workflows of data scientists in ML projects,
prompting companies to seek professionals with expertise in Gener-
ative AI. In Figure 1 these timelines highlighted in red capture these
pivotal transitions, i.e. the initial focus on traditional ML skills and
the subsequent demand for Generative AI expertise, underscoring the
central role of skills in this context. This approach to mapping event-
driven timelines is fundamental to addressing the MinTCover prob-
lem.

Overall, MinTCover is a robust and formally grounded approach
for detecting new skills early enough to warrant strategic response.
Indeed, it offers a principled approach to identifying skills that gen-
uinely impact the labor market, enabling timely interventions such as
curriculum updates, upskilling, or strategic planning.

3 Methodology

To leverage the MinTCover problem for early skill detection, we
first construct a temporal KG from job postings: each job posting
is parsed into a local KG annotated with its timestamp. These KGs
are aggregated over time by stacking them into a unified temporal
structure, where edges retain the timestamp of their first appearance.

Building KGs from unstructured text is a challenging task, often
tackled using various DL methods [30]. Recent advances in LLMs
like GPT-4o [29, 9], combined with prompt engineering [21], allow
effective KG extraction without fine-tuning. We follow the method-
ology proposed in [14], adapting LLM prompts to extract skills and
relationships following the classical ML-based text-to-KG pipeline1.

3.1 Knowledge Graph Construction

To build the KG, we adopt a prompt-engineering framework that
combines both standard practices and different prompting strate-
gies, like zero-shot [25], few-shot [1] and chain-of-thought [26]. The
framework breaks down the process into four essential elements:
Role, Instructions, Steps, and Expectations.

The LLM is assigned the task of converting job descriptions into
KGs, where nodes represent normalized technical skills, edges con-
nect skills co-mentioned within the same sentence or paragraph and
date records the posting’s publication date. These aspects are speci-
fied, together with some examples, in the Role and Instructions sec-
tions. In building the KG we only focus on hard technical skills. The
Steps section breaks down the task into manageable steps in a chain-
of-thought fashion, ensuring a logical progression. Here we ask the
LLM to follow the classical steps of the text-to-KG pipeline, first ex-
tracting all the skills from the job posting normalizing them consid-
ering synonyms and linguistic variations, then creating a list of all the
nodes and linking nodes with edges for skills that appear in the same
sentence, and finally refining the graph checking for consistency. We
link two nodes only if they appear in the same sentence. Indeed, an
analysis of real job description showed that, in general, skills that are
related appear together in the same sentence. Over time, as new tech-
nologies or skills emerge, they will initially appear alongside older
ones in job descriptions. Eventually, the older skills will fade away,

1 This includes entity classification, relationship extraction, entity disam-
biguation and linking, knowledge integration and knowledge refinement.

leaving only the new ones and other related competencies. By link-
ing nodes this way, we create a KG that effectively captures these
transitions, making it well-suited for early skill detection within the
MinTCover framework. In the final Expectations section we define
the ultimate objective of the prompt, guiding the LLM’s focus toward
a specific outcome structure (a dictionary-like structure with list of
nodes, list of edges and timestamps) also providing an example to
further instruct the LLM on the end goal.

Knowledge Graph Construction Prompt

ROLE: You are an algorithm that
must convert job descriptions into a
knowledge graph.
INSTRUCTIONS: Create a knowledge graph
in which:
- Nodes: Each node represents a
unique skill extracted from the job
description. Focus on skills tied to
specific activities or technologies
(e.g., map “experience with Docker” to
“Docker”).
- Edges: An edge exists if the
corresponding skills are mentioned
together in the same sentence or
paragraph.
Focus only on hard technical skills.
STEPS: To build the knowledge graph
follow these steps:
1) Extract the skills: Analyze the job
description and extract all technical
skills, normalizing for synonyms and
variations.
2) Create the nodes: Generate a list of
unique skills resolving ambiguities.
3) Create the edges: Link every pair of
skills mentioned in the same sentence or
paragraph.
4) Create the knowledge graph: Integrate
the extracted skills and edges into
a cohesive knowledge graph structure
eventually refining it by checking for
consistency.
EXPECTATIONS: Provide the resulting
knowledge graph in a dictionary-like
structure including:
- List of nodes: unique identifiers for
each skill.
- List of edges: array of skill pairs.
- Date: publication date (DD-MM-YYYY).
Example:
Input: “A pharmaceutical company is
looking for a Data Scientist with
experience in Python and Machine
Learning. Published on: 2023-10-15”.
Output: { "nodes": [ "Data Science",
"Python", "Machine Learning"],
"edges": [ ["Data Science", "Python"],
["Data Science", "Machine Learning"],
["Python", "Machine Learning"]], "date":
"15-10-2023" }.
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This prompt structure ensures the generation of KGs with consis-
tent formatting and temporal metadata. Once converted, job postings
are chronologically ordered and aligned by node sets to create a com-
plete temporal KG for each specific role, enabling the application of
MinTCover for fine-grained skill trend analysis.

3.2 Heuristic Optimization

To compute skill timelines, we start from DLMINTC+, the DL-
based approach proposed in [16], which leverage DL frameworks
to properly represent node sequences and select activity intervals.
This solver operates in five stages. First, each node is characterized
via temporal degree-based features to capture its local structure at
each timestamp. Then, the temporal graph is embedded, encoding
node features over time with GNN. These sequences are aggregated
to model the full temporal evolution of each node and processed with
a Transformer. A pointer mechanism then selects activity intervals
for each node based on the learned temporal representations. Finally,
to ensure complete coverage, since the selected intervals may not
form a valid timeline cover, an iterative post-processing step ensures
full edge coverage by refining the output intervals accordingly, thus
covering uncovered edges while minimizing the overall sum-span
S(T ) =

∑
u∈V (eu − su). Given a temporal graph G = (V,E)

and intervals T , the algorithm proceeds as follows:

1. Initialize: Identify uncovered edges U = {(u, v, t) ∈ E | t /∈
Iu ∧ t /∈ Iv}.

2. Expand Intervals: For each (u, v, t) ∈ U , extend either Iu or Iv
with minimal span increase to include t.

3. Iterate: Repeat until all edges are covered.

This yields a refined set T ′ that guarantees coverage of all tempo-
ral edges and local minimality - each expansion step is minimal at the
time of application. However, global minimality is not guaranteed. To
improve this, we introduce an enhanced version in Algorithm 1, in-
corporating a loss-based reduction step, similar to the one proposed
in [15]. This phase identifies and removes timestamps that do not
contribute to edge coverage, producing more compact and efficient
timelines.

The algorithm consists of 2 phases and begins with the initial
intervals produced by the Minimal Timeline Completion algorithm
proposed in [16] for each node. In a first phase we compute a loss
value (which corresponds to the number of covered edges that would
become uncovered after reducing the interval of a node) for each
node–timestamp pair which are at the boundary of the timeline (thus,
only initial and final node-timestamp pair for each timeline), reflect-
ing whether that exact pair is solely responsible for covering any
edge. Then, in the reduction phase, all timestamps with zero loss (i.e.,
not uniquely covering any edge) are removed. After each reduction
the loss is recomputed for all nodes.

3.2.1 Minimality Considerations

Algorithm 1 yields a final set of intervals that both covers all edges
and is minimal, i.e. no further shrinking is possible without losing
coverage, as proved in Theorem 1.

Theorem 1. Let T be the output of Algorithm 1 on the temporal
graph G = (V,E), with initial timeline T ′ computed by the Minimal
Timeline Completion Algorithm. Then T is a minimal timeline cover
of G according to Problem 1; that is, no further contraction of any
interval can be performed without uncovering at least one edge.

Algorithm 1: Minimal Timeline Completion with Loss-
Based Reduction

Input: G = (V,E), T ′ = {Iu = [su, eu]}u∈V (from
Minimum Timeline Completion)

Output: Adjusted intervals T covering E and reduced to
minimal

Phase 1: Loss Computation

Initialize loss((v, t)) ← 0 for all (v, t) where
t ∈ [sv, ev].

foreach (u, v, t) ∈ E do

// Check coverage at t by u and v
coversu ← I(t ∈ [su, eu]);
coversv ← I(t ∈ [sv, ev]);
// if exactly one endpoint covers t
if coversu + coversv = 1 then

if coversu = 1 then
loss((u, t)) ← loss((u, t)) + 1;

end

else
loss((v, t)) ← loss((v, t)) + 1;

end

end

end

Phase 2: Final Reduction (Shrinking)

foreach v ∈ V do

for t = sv to ev do

if loss((v, t)) = 0 then

// Removing t does not uncover
any edge exclusively covered
by (v, t)

Remove t from [sv, ev] and recompute loss
for other nodes;

end

end

end

return T ;

To provide a demonstration to Theorem 1 we split the proof into
three parts. Since Algorithm 1 starts with the initial completion for
which it has been shown the output is a valid coverage, we firstly
show that coverage is preserved after reduction, then that loss value
of any vertex in the timeline T does not decrease and finally that the
timeline T returned after the shrinking phase is minimal.

Proof. (1) Let us denote by T i the timeline at the i-th iteration of the
shrinking phase and by T 0 = T ′ the input timeline. By construction,
T 0 is a valid cover. We show by induction that if T i is a timeline
cover, then T i+1 is also a cover. Since T 0 covers E (by the end of
the extending phase), it follows that every subsequent T i remains
a cover. Indeed, if in the i-th iteration no vertex–timestamp pair is
removed, then T i+1 = T i, so coverage clearly remains intact. Oth-
erwise, if in the i-th iteration a pair (v, t) with loss((v, t)) = 0 is re-
moved, it means (v, t)was not uniquely covering any edge. Formally,
for every edge (u, v, t) ∈ E, there exists another vertex–timestamp
pair (u, t) such that t ∈ Iu (or equivalently t ∈ Iv but with pos-
itive loss). Hence its removal does not uncover any edge, ensuring
that T i+1 also remains a valid cover. Therefore, by induction, T i is
a cover for all i, in particular T ∗ at the final iteration.

(2) Next, we show that the loss value for each remaining vertex–
timestamp pair (v, t) never decreases during the shrinking phase.
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• If loss((v, t)) > 0 at iteration i, then (v, t) is not removed at the
i-th iteration. As a result, its loss value cannot decrease; it either
remains the same or may increase if other pairs covering the same
edges are removed.

• If loss((v, t)) = 0 at iteration i, then (v, t) is removed in the i-th
iteration. Once removed, we do not track its loss value any further.

• Furthermore, when a different pair (u, t′) is removed, any edge
that (u, t′) was covering might now rely solely on (v, t) (if it has
the same timestamp t), which could increase loss((v, t)) if (v, t)
remains in T .

Hence, no existing pair (v, t) has its loss value decreased over the
course of the shrinking phase.

(3) Finally, suppose for contradiction that T ∗ is not minimal, i.e.,
there exists a pair (v, t) ∈ T ∗ such that removing it still leaves T ∗ a
valid cover. By definition, this implies loss((v, t)) = 0, since (v, t)
does not uniquely cover any edge. However, from part (2), once a
pair (v, t) has positive loss, it stays positive; conversely, if it has
loss((v, t)) = 0 at iteration i, it is removed at that same iteration.
Thus, no vertex–timestamp pair with zero loss can remain in T at the
end. Therefore, (v, t) cannot exist in T ∗ with loss((v, t)) = 0 and
we reach a contradiction. This contradiction shows that every pair
(v, t) in T ∗ must be essential for coverage, confirming that T ∗ is
minimal.

3.2.2 Complexity Considerations

Let n = |V | and m = |E|. Phase 1 performs loss computation
which depends on the number of vertices (v, t) ∈ T . Since we
add, for each vertex v ∈ V exactly two timestamps (the start and
end of the activity interval, namely, sv, ev), the dimension of the
computed activity timeline is exactly |T | = 2n. It follows that the
complexity for the initialization of the loss is O(n). Phase 2 is the
shrinking phase, whose complexity depends on the number of up-
dates performed over the loss values. Since each vertex is updated at
most once for each edge incident in it, the total number of possible
updates is bounded to the sum of the global degrees of each ver-
tex, i.e.,

∑
v∈V deg(v) = 2m, thus the complexity of the shrinking

phase is O(m). Therefore, the overall complexity of the algorithm is
O(m+ n).

In summary, Algorithm 1 not only ensures coverage of all tempo-
ral edges but also prunes away superfluous timestamps through loss,
guaranteeing that the final solution is minimal with respect to interval
contraction.

4 Experimental Evaluation

4.1 Performance Metrics

We evaluate our approach through two analyses. First, we assess
the impact of the loss-based refinement in the Minimal Timeline
Completion algorithm, comparing the total sum-span S(T ) pro-
duced by the baseline DLMINTC+ approach [16] and our enhanced
version with loss-based reduction, using the DIMACS benchmark
graphs [19], which encompasses diverse network structures. Both
methods share identical architectures, hyperparameters, and training
setups to ensure a fair comparison based on sum-span minimization.
Second, to evaluate early skill detection capabilities, we crafted a
dataset of job postings and related skills which has been published
for reproducibility purpose [13]. In this dataset we compare predicted
activity intervals with ground truth annotations over a dataset of job

postings spanning 2000–2024. This dataset includes 250 postings (on
average 10 per year across five sectors: Banking, Insurance, Consul-
tancy, Pharma, Retail), focused on the Data Science role 2. We use
this dataset both to evaluate the quality of skill extraction, matching
the extracted skills against those detected by expert analyzing the set
of job postings, and to compare the results of our MinTCover-based
approach for early skills detection with the network-based method
that uses temporal skill clustering [22]. We compare the results with
this approach since in the literature is the only one that completely
relies on job posting as source of skills detection and do not need a
lot of historical data to predict the trends, even if it can perform fore-
casting only for a predefined set of skills, thus not being completely
unsupervised. For the latter case, we adopt standard precision (P) and
recall (R) metrics as in Equations 1 and 2,

P =
|Extracted ∩ Ground Truth|

|Extracted| (1)

R =
|Extracted ∩ Ground Truth|

|Ground Truth| (2)

while for the former we use Intersection over Union (IoU) as in Equa-
tion 3, which measures the overlap between predicted and true active
intervals for each skill u, capturing both correct detection and false
alarms,

IoU(u) =

∣
∣ Ireal(u) ∩ Ipred(u)

∣
∣

∣
∣ Ireal(u) ∪ Ipred(u)

∣
∣ (3)

and Detection Delay (Δ) as in Equation 4, which captures how early
or late the algorithm detects a skill relative to its actual onset,

Δ(u) = spred(u) − sreal(u). (4)

These metrics jointly assess detection accuracy, timeliness, and the
model’s ability to avoid premature or delayed activation of skills.

4.2 Experimental Results

Firstly, we evaluate the efficiency of our method by measuring the
reduction in total sum-span S(T ) achieved by our loss-optimized re-
finement over the baseline DLMINTC+ solver. Table 1 summarizes
the results across a diverse collection of temporal graphs, reporting
for each graph its density D and the absolute reduction ΔS in sum-
span. The full dataset includes graphs with a number of nodes rang-
ing from 24 to 89,269 (mean: 6,800), edges from 554 to over 18 mil-
lion (mean: 1.2 million), and temporal spans from 1 to over 736,000
timestamps (mean: 40,000). In general, higher-density graphs tend
to exhibit fewer timestamps and represent highly interactive environ-
ments over short durations (e.g., animal behavior or sensor contact),
whereas lower-density graphs typically span longer temporal win-
dows with sparser interactions (e.g., online or communication net-
works). Our method consistently improves over the baseline, with
identical performance observed in only two cases. On average, it re-
duces the total sum-span by 1.17%, with the largest absolute gains
found in high-volume datasets such as fb-wosn-friends and ia-digg-
reply, where even small percentage improvements translate into sub-
stantial temporal compression.

2 Ground truth intervals were annotated by three domain experts, marking
when each skill was genuinely in demand. We only focus on hard techni-
cal skills and we computed inter-annotator agreement for all the skills ex-
tracted observing high consistency across annotators. When disagreement
occurred, a consensus process was used to define the final reference inter-
vals.
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Graph d ΔS

aves-sparrow-social 3.89× 10−1 0
aves-wildbird-network 1.17× 10−1 1.80× 101

copresence-InVS13 4.39× 10−3 2.00× 104

copresence-InVS15 2.50× 10−3 1.00× 104

copresence-LH10 4.53× 10−3 7.00× 103

copresence-LyonSchool 7.24× 10−2 3.00× 103

copresence-SFHH 5.56× 10−3 5.00× 103

copresence-Thiers13 3.88× 10−2 2.00× 104

email-dnc 1.13× 10−6 1.00× 103

fb-wosn-friends 8.49× 10−10 2.00× 106

ia-contacts-dublin 8.98× 10−8 9.00× 103

ia-contacts-hypertext2009 6.27× 10−4 5.00× 103

ia-digg-reply 2.26× 10−9 4.00× 105

ia-hospital-ward-proximity 1.24× 10−3 6.00× 103

ia-primary-school-proximity 1.39× 10−3 3.00× 103

ia-prosper-loans 6.77× 10−7 4.00× 103

ia-retweet-pol 5.93× 10−9 3.00× 104

insecta-ant-colony1 4.41× 10−1 4.00× 101

insecta-ant-colony3 4.74× 10−1 5.00× 101

insecta-ant-colony5 4.23× 10−1 1.10× 102

mammalia-raccoon-proximity 1.42× 10−1 7.00× 100

rec-amz-Baby 1.06× 10−9 5.00× 104

reptilia-tortoise-network-bsv 2.01× 10−2 1.20× 100

reptilia-tortoise-network-fi 6.92× 10−4 0
SFHH-conf-sensor 2.47× 10−4 9.00× 103

Table 1. Comparison of temporal coverage reduction (ΔS) across various
temporal graphs. ΔS represents the difference in total sum-span between the
baseline DLMINTC+ solution and our loss-optimized refinement. Results
are presented across graphs with varying density d, computed as the ratio of
observed to possible temporal edges. Densely connected graphs tend to span

shorter time windows with fewer timestamps (e.g., sensor or proximity
networks), while sparse graphs often cover broader temporal ranges (e.g.,
online interaction or communication networks). Overall, our refinement

achieves consistent reductions in total sum-span across both dense and sparse
graphs, with the most substantial absolute improvements observed in large,
low-density networks—where timeline compression has the highest impact.

Secondly, we measure our LLM-based approach’s skills extraction
ability measuring Precision and Recall comparing the set of extracted
skills against the ground truth generated by domain experts 3. Each
skill in the ground truth was also categorized as either established or
emerging, based on its historical presence in curricula, policy docu-
ments, and prior job postings. A skill was considered matched if it
appeared in both the extracted and ground-truth sets. As shown in
Table 2, our method achieves high performance on both categories.
For established skills, we observe a precision of 0.97 and recall of
0.93, indicating strong consistency with well-known competencies.
For emerging skills, despite their inherently more variable represen-
tation, the model achieves a recall of 0.96, confirming its suitability
for early trend detection. The lower precision (0.64) in this category
reflects the presence of valid but not yet annotated skills, further
highlighting the discovery potential of our approach. A manual in-
spection confirmed that the majority of these, indeed, correspond to
valid and emerging competencies not previously annotated such as
GenAIOps, Quantistic AI, and Causal AI, which were absent from
historical taxonomies, suggesting that the measured precision under-
estimates the system’s true accuracy. This highlights the ability of
the extraction component not only to preserve existing knowledge,
but also to adapt to rapidly evolving labor market trends.

3 Consider that on a standard machine (4 CPU, 16 GB RAM), the full pipeline
processes 100 job postings in under 8 minutes, with 70% of the time spent
on LLM inference. This step is highly parallelizable and can be cached for
efficiency.

SkillType GroundTruth Extracted Matched P R

Established 60 58 56 0.97 0.93
Emerging 24 36 23 0.64 0.96

Table 2. Precision and recall of the extracted skills, broken down by type.
A skill is considered matched if it appears in both the extracted set and the

ground truth. Manual inspection confirmed that several unmatched
skills—such as GenAIOps and Quantistic AI—were indeed valid emerging

skills not previously annotated, suggesting that the measured precision
underestimates the system’s true accuracy.

Finally, we assess early skill detection performance using the IoU
score and detection delay Δ. Figure 2 shows the distribution of IoU
scores between the predicted skill intervals and the expert-annotated
ground truth. For the network-based clustering approach, since it re-
quires to define skills in advanced, we perform the analysis for the
set of skills extracted by the LLM pipeline, thus being able to ex-
actly compare the performance on each skill. Our method achieves a
higher mean IoU of 0.697, compared to 0.622 for the baseline. While
the baseline distribution is flatter and skewed toward mid-range val-
ues, our approach displays a pronounced concentration in the upper
range indicating that it is not only more precise in identifying when
skills are active, but also significantly more consistent across differ-
ent skill categories.

Figure 2. Comparison of IoU distributions for predicted vs. ground truth
skill intervals for our MinTCover-based approach and the baseline

clustering-based approach.

Figure 3 reports the Δ distribution in months. While the baseline
achieves a slightly lower mean delay of 1.0 months, our method
records a comparable average of 1.41 months. However, a closer
look at the distribution reveals key differences: our approach ex-
hibits a sharper concentration around zero, indicating more accu-
rate timing overall, whereas the baseline shows a flatter spread with
more frequent deviations. In particular, our method achieves a better
balance between early and late detections, avoiding both premature
activations and excessive lags. This behavior reflects the design of
our temporal model, which favors minimal, context-aware activation
windows over generalized, cluster-driven trends. As a result, the pro-
posed method not only predicts when a skill becomes relevant with
greater precision, but also provides a temporally faithful representa-
tion of its emergence - crucial for actionable forecasting and timely
policy intervention.
As seen, even if effective, one of the main drawbacks of the network-
based clustering baseline is that it relies on a predefined list of skills
and, thus, merely observes the evolution of known competencies. Our
method, instead, operates in a fully unsupervised setting. Skill ex-
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Figure 3. Comparison of detection delay Δ in months for our
MinTCover-based approach and the baseline clustering-based approach.

traction is performed dynamically using LLMs, allowing the system
to identify and track emerging skills in real time, even those not pre-
viously annotated or catalogued. Nonetheless, our skills extraction
pipeline is modular and could be applied on top of the network-based
clustering framework to enhance its responsiveness, making it actu-
ally suitable for early skills detection.

5 Conclusion and Future Works

In this work, we pursued a dual objective: advancing the state of the
art in solving the MinTCover problem, and leveraging this improve-
ment for the critical task of early skill detection in the labor market.

To this end, we proposed a novel end-to-end framework that com-
bines dynamic skill extraction through LLMs, temporal KG con-
struction, and an enhanced MinTCover solver. This architecture al-
lows for fully unsupervised and real-time tracking of emerging skills,
overcoming limitations of existing approaches that either rely on
predefined taxonomies or require extensive historical datasets. Our
method is among the first to enable precise, scalable early detection
of in-demand competencies directly from job postings.

Experimental results demonstrate the strength of our solution on
both fronts. On the optimization side, the proposed loss-based re-
finement step leads to a 1.17% average reduction in total sum-span
over diverse benchmark graphs - without compromising scalability -
confirming the effectiveness of the proposed minimality guarantee.
On the application side, our approach outperforms a network-based
clustering baseline in early skills detection, achieving a higher mean
IoU (0.697 vs. 0.622) and a more temporally centered detection de-
lay, with fewer extreme deviations.

Moreover, our skill extraction pipeline shows high precision and
recall even for emerging skills, where variability and ambiguity
are inherently higher. These results validate the potential of com-
bining temporal reasoning and real-time LLM-based extraction for
next-generation labor market intelligence systems. Although our ex-
periments focused on the Data Science domain, the framework is
domain-agnostic and can be adapted to other sectors, provided suffi-
cient job postings are available.

Future work will focus on benchmarking different KG construc-
tion strategies and prompt design choices to assess their impact on
downstream forecasting performance. Additionally, we plan to ex-
tend the framework to incorporate alternative data sources (e.g.,
patents, course platforms, and social forums) and move toward a
probabilistic formulation of skill relevance to better model gradual
adoption and decay over time. Moreover, while the current imple-
mentation assumes undirected and unlabeled co-occurrence graphs,

future work will explore extending the approach to support edge di-
rectionality and semantic types to leverage the full expressiveness of
KGs.
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